- Код статьи
- 10.31857/S0041377123030070-1
- DOI
- 10.31857/S0041377123030070
- Тип публикации
- Статус публикации
- Опубликовано
- Авторы
- Том/ Выпуск
- Том 65 / Номер выпуска 3
- Страницы
- 303-310
- Аннотация
- Экспансионная микроскопия (Expansion microscopy, ExM) – метод пробоподготовки, позволяющий добиться улучшенной визуализации структур за счет физического расширения образца. Этот метод используется в сочетании с традиционной световой микроскопией и позволяет без применения сложных технических устройств, характерных для методов сверхразрешающей микроскопии (super-resolution microscopy), добиться визуализации биологических структур с более высоким разрешением. В отличие от методов сверхразрешающей микроскопии, экспансионная микроскопия не позволяет преодолеть дифракционный предел, однако наблюдаемый эффект можно считать эквивалентным увеличению пространственного разрешения. Относительная простота метода и нетребовательность к используемому микроскопу сделали экспансионную микроскопию довольно популярным методом для визуализации различных биологических структур. В настоящей работе описано использование экспансионной микроскопии для визуализации в клетках Escherichia coli, находящихся в состоянии SOS-ответа, ДНК и структур, формируемых белком FtsZ. Результаты работы подтверждают полученные ранее данные о том, что белок FtsZ в клетках, находящихся в состоянии SOS-ответа, распределен неравномерно. Использованный в работе протокол визуализации клеток E. coli, предварительно закрепленных на поверхности стекла, с помощью метода экспансионной микроскопии может быть использован в будущем для изучения внутренних структур других клеток – как бактериальных, так и эукариотических.
- Ключевые слова
- экспансионная микроскопия белок FtsZ SOS-ответ бактериальное деление
- Дата публикации
- 01.05.2023
- Год выхода
- 2023
- Всего подписок
- 0
- Всего просмотров
- 43
Библиография
- 1. Деревцова К.З., Пчицкая Е.И., Раковская А.В., Безпрозванный И.Б. 2021. Применение метода экспансионной микроскопии в нейробиологии. Российский физиологический журнал им. И.М. Сеченова. Т. 107. № 4–5. С. 568. (Derevtsova K.Z., Pchitskaya E.I., Rakovskaya A.V., Bezprozvanny I.B. 2021. Applying the expansion microscopy method in neurobiology. Rossiyskiy fiziologicheskiy zhurnal im. I.M. Sechenova. V. 107. № 4–5. P. 568.)
- 2. Клементьева Н.В., Загайнова Е.В., Лукьянов К.А., Мишин А.С. 2016. Принципы флюоресцентной микроскопии сверхвысокого разрешения (обзор). Современные технологии в медицине. Т. 8. С. 130. (Klementieva N.V., Zagaynova E.V., Lukyanov К.А., Mishin A.S. 2016. The Principles of super-resolution fluorescence microscopy (review). Sovremennye tehnologii v medicine. V. 8. P. 130.)
- 3. Asano S.M., Gao R., Wassie A.T., Tillberg P.W., Chen F., Boyden E.S. 2018. Expansion microscopy: protocols for imaging proteins and RNA in cells and tissues. Curr. Prot. Cell Biol. V. 80. P. e56. https://doi.org/10.1002/cpcb.56
- 4. Chang J.-B., Chen F., Yoon Y.-G., Jung E.E., Babcock H., Kang J.S., Asano S., Suk H.-J., Pak N., Tillberg P.W., Wassie A.T., Cai D., Boyden E.S. 2017. Iterative expansion microscopy. Nat. Methods. V. 14. P. 593.
- 5. Chen F., Tillberg P.W., Boyden E.S. 2015. Expansion microscopy. Science. V. 347. P. 543.
- 6. Chen Y., Milam S.L., Erickson H.P. 2012. SulA inhibits assembly of FtsZ by a simple sequestration mechanism. Biochemistry. V. 51. P. 3100.
- 7. Chozinski T.J., Halpern A.R., Okawa H., Kim H.-J., Tremel G.J., Wong R.O.L., Vaughan J.C. 2016. Expansion microscopy with conventional antibodies and fluorescent proteins. Nat. Methods. V. 13. P. 485.
- 8. Feng H., Wang X., Xu Z., Zhang X., Gao Y. 2018. Super-resolution fluorescence microscopy for single cell imaging. In: Single cell biomedicine. Singapore: Springer Singapore. P. 59.
- 9. Li H., Warden A.R., He J., Shen G., Ding X. 2022. Expansion microscopy with ninefold swelling (NIFS) hydrogel permits cellular ultrastructure imaging on conventional microscope. Science Advances. V. 8. https://doi.org/10.1126/sciadv.abm4006
- 10. Moore D.A., Whatley Z.N., Joshi C.P., Osawa M., Erickson H.P. 2017. Probing for binding regions of the FtsZ protein surface through site-directed insertions: discovery of fully functional FtsZ-fluorescent proteins. J. Bacteriol. V. 199. P. e00553-16. https://doi.org/10.1128/JB.00553-16
- 11. Renz M. 2013. Fluorescence microscopy – a historical and technical perspective. Cytometry Part A. V. 83. P. 767.
- 12. Sanderson M.J., Smith I., Parker I., Bootman M.D. 2014. Fluorescence microscopy. Cold Spring Harbor Protocols. V. 2014. P. pdb.top071795. https://doi.org/10.1101/pdb.top071795
- 13. Tillberg P.W., Chen F., Piatkevich K.D., Zhao Y., Yu C.-C., English B.P., Gao L., Martorell A., Suk H.-J., Yoshida F., DeGennaro E.M., Roossien D.H., Gong G., Seneviratne U., Tannenbaum S.R., et al. 2016. Protein-retention expansion microscopy of cells and tissues labeled using standard fluorescent proteins and antibodies. Nat. Biotech. V. 34. P. 987.
- 14. Vedyaykin A., Rumyantseva N., Khodorkovskii M., Vishnyakov I. 2020. SulA is able to block cell division in Escherichia coli by a mechanism different from sequestration. Biochim. Biophys. Res. Commun. V. 525. P. 948.
- 15. Vedyaykin A.D., Sabantsev A.V., Vishnyakov I.E., Borchsenius S.N., Fedorova Y.V., Melnikov A.S., Serdobintsev P.Y., Khodorkovskii M.A. 2014. Localization microscopy study of FtsZ structures in E. coli cells during SOS-response. J. Phys. Conf. Ser. V. 541. P. 012036. https://doi.org/10.1088/1742-6596/541/1/012036
- 16. Verma S.C., Qian Z., Adhya S.L. 2019. Architecture of the Escherichia coli nucleoid. PLoS Genet. V. 15. P. e1008456. https://doi.org/10.1371/journal.pgen.1008456
- 17. Wassie A.T., Zhao Y., Boyden E.S. 2019. Expansion microscopy: principles and uses in biological research. Nat. Methods. V. 16. P. 33.