RAS BiologyЦитология Cell and Tissue Biology

  • ISSN (Print) 0041-3771
  • ISSN (Online) 3034-6061

Interaction of pRb and beta-catenin in cancer and normal tissue in the human prostate

PII
10.31857/S0041377124010067-1
DOI
10.31857/S0041377124010067
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 66 / Issue number 1
Pages
64-76
Abstract
Prostate cancer (PCa) is one of the most common oncological diseases, which goes through two stages in its development. The first stage, localized prostate cancer, can proceed indefinitely in a dormant form that does not require active medical intervention, or suddenly turn into an aggressive metastatic form with lethal outcome. The pathogenesis of the transition of the dormant form of PCa to the metastatic form remains not fully understood. The signaling pathways of the tumor suppressor pRb and the proto-oncogene β-catenin are probably the most involved in the pathogenesis of PCa but the role of their interaction in the pathogenesis of prostate cancer has not been studied. The publication on the pathogenesis of tumors in other tissues suggests that pRb may lose some properties of a tumor suppressor at the initial stage of PCa development due to its interaction with β-catenin that enables tumor cells to gain competitive advantages for reproduction. In this work, we have shown that the RB and β-catenin (CTNNB1) genes are well expressed in tumor and normal prostate tissue. Unlike β-catenin, pRb is not detected by immunoblotting in tumor and normal prostate tissue, but is easily determined in this way in extracts of control T98G cells. Co-immunoprecipitation with antibodies to pRb from extracts of tumor and normal prostate tissue makes it possible to detect this protein and β-catenin by subsequent immunoblotting, which indicates the physical interaction of these proteins in prostate tissue. On the other hand, immunoprecipitation of β-catenin with antibodies to its C-terminal fragment does not detect this protein in prostate extracts by subsequent immunoblotting using the same antibody. In contrast to prostate tissue, β-catenin is readily detected by immunoprecipitation combined with immunoblotting in T98G control cell extracts. The obtained data suggest that pRb and β-catenin physically interact with each other in cells of different tissue specificity. In T98G cells, this interaction probably occurs through the C-terminal fragment of β-catenin, but in prostate cells it occurs in a different way, since the C-fragment of β-catenin is shielded from such interaction, possibly due to its physical association with pRb.
Keywords
локализованный рак предстательной железы сигнальные пути pRb β-катенин взаимодействие
Date of publication
15.01.2024
Year of publication
2024
Number of purchasers
0
Views
45

References

  1. 1. Петров Н.С., Воскресенский М.А., Грозов Р.В., Коршак О.В., Зарицкий А.Ю., Верещагина Н.А., Комяков Б.К., Попов Б.В. 2016. Маркеры клеток базального слоя эпителия предстательной железы являются эффективными индикаторами ее злокачественной трансформации. Цитология. Т. 58. С. 526. (Petrov N.S., Voskresenskiy M.A., Grozov R.V., Korshak O.V., Zaritskey A.Y., Vereschagina N.A., Komyakov B.K. and Popov B.V. 2017. Markers of the basal cell layer of prostate are effective indicators of its malignant transformation. Cell Tiss. Biol. V. 11. P. 205). https:// doi.org/10.1134/S1990519X17030099
  2. 2. Рябов В.M., Воскресенский М.А., Попов Б.В. 2022. Роль опухолевого супрессора RB в развитии локализованного и кастрационно-резистентного рака предстательной железы. Цитология. T. 64. С. 208. (V.M. Ryabov, M.A. Voskresenskiy, B.V. Popov. 2022. Role of the tumor suppressor RB in the development of localized and castration-resistant prostate cancer. Cell Tiss. Biol. V. 16. P. 434). https://doi.org/10.1134/S1990519X2205008X
  3. 3. Balk S.P., Knudsen K.E. 2008. AR, the cell cycle, and prostate cancer. Nucl Recept Signal. V. 6. P. e001. https://doi: 10.1621/nrs.06001
  4. 4. Cancer Genome Atlas Network. 2012. Comprehensive molecular characterization of human colon and rectal cancer. Nature. V. 487. P. 330. https://doi.org/10.1038/nature11252
  5. 5. Chau B.N., Borges H.L., Chen T.T., Masselli A., Hunton I.C., Wang J.Y. 2002. Signal-dependent protection from apoptosis in mice expressing caspase-resistant Rb. Nat. Cell Biol. V. 4. P. 757. https://doi.org/10.1038/ncb853
  6. 6. Ciavarra G., Zacksenhaus E. 2011. Direct and indirect effects of the pRb tumor suppressor on autophagy. Autophagy. V. 7. P. 544. https://doi.org/10.4161/auto.7.5.15056
  7. 7. Cunha G.R. 1994. Role of mesenchymal-epithelial interactions in normal and abnormal development of the mammary gland and prostate. Cancer. V. 74. P. 1030. https://doi.org/10.1002/1097-0142 (19940801)74:3+3.0.co;2-q.
  8. 8. Derenzini M., Donati G., Mazzini G., Montanaro L., Vici M., Ceccarelli C., Santini D., Taffurelli M., Treré D. 2008. Loss of retinoblastoma tumor suppressor protein makes human breast cancer cells more sensitive to antimetabolite exposure. Clin. Cancer Res. V. 14. P. 2199. https://doi.org/10.1158/1078-0432.CCR-07-2065
  9. 9. Dick F.A., Goodrich D.W., Sage J., Dyson N.J. 2018. Non-canonical functions of the RB protein in cancer. Nat. Rev. Cancer. V. 18. P. 442. https://doi.org/10.1038/s41568-018-0008-5
  10. 10. Dyson N.1998. The regulation of E2F by pRB-family proteins. Genes Dev. V 12. P. 2245. https://doi.org/10.1101/gad.12.15.2245
  11. 11. Friend S.H., Bernards R., Rogelj S., Weinberg R.A., Rapaport J.M., Albert D.M., Dryja T.P. 1986. A human DNA segment with properties of the gene that predisposes to retinoblastoma and osteosarcoma. Nature. V. 323. P. 643. https://doi.org/10.1038/323643a0
  12. 12. Han J., Soletti R.C., Sadarangani A., Sridevi P., Ramirez M.E., Eckmann L., Borges H.L., Wang J.Y. 2013. Nuclear expression of β-catenin promotes RB stability and resistance to TNF-induced apoptosis in colon cancer cells. Mol. Cancer Res. V. 11. P. 207. https://doi.org/10.1158/1541-7786.MCR-12-0670
  13. 13. Hansen K., Farkas T., Lukas J., Holm R., Rönnstrand L., and Bartek J. 2001. Phosphorylation-dependent and -independent functions of p130 cooperate to evoke a sustained G1 block. EMBO J. V. 20. P. 422. https//doi.org/10.1093/emboj/20.3.422
  14. 14. Kareta M.S., Gorges L.L., Hafeez S., Benayoun B.A., Marro S., Zmoos A.F., Cecchini M.J., Spacek D., Batista L.F., O’Brien M., Ng Yi-H., Ang C.E., Vaka D., Artandi S.E., Dick F.A., Brunet A. et al. 2015. Inhibition of pluripotency networks by the Rb tumor suppressor restricts reprogramming and tumorigenesis. Cell Stem Cell. V. 16. P. 39. https://doi.org/10.1016/j.stem.2014.10.019
  15. 15. Kypta R.M., Waxman J. 2012. Wnt/β-catenin signalling in prostate cancer. Nat. Rev. Urol. V. 9. P. 418. https://doi.org/10.1016/j.stem.2014.10.019
  16. 16. Lee W.H., Bookstein R., Hong F., Young L.J., Shew J.Y., Lee E.Y. 1987. Human retinoblastoma susceptibility gene: cloning, identification, and sequence. Science. V. 235. P. 1394. https://doi.org/10.1126/science.3823889
  17. 17. Mandigo A.C., Tomlins S.A., Kelly W.K., Knudsen K.E. 2021. Relevance of pRB Loss in Human Malignancies. Clin. Cancer Res. V. 28. P. 255. https:// doi.org/10.1158/1078-0432.CCR-21-1565
  18. 18. Mazor M., Kawano Y., Zhu H., Waxman J., Kypta R.M. 2004. Inhibition of glycogen synthase kinase-3 represses androgen receptor activity and prostate cancer cell growth. Oncogene. V. 23. P. 7882. https://doi.org/10.1038/sj.onc.1208068
  19. 19. McNair C., Xu K., Mandigo A.C., Benelli M., Leiby B., Rodrigues D., Lindberg J., Gronberg H., Crespo M., De Laere B., Dirix L., Visakorpi T., Li F., Feng F.Y., de Bono Jуе Demichelis F. et al. 2018. Differential impact of RB status on E2F1 reprogramming in human cancer. J. Clin. Invest. V. 128. P. 341. https://doi.org/10.1172/JCI93566
  20. 20. Morris E.J., Ji J.Y., Yang F., Di Stefano L., Herr A., Moon N.S., Kwon E.J., Haigis K.M., Näär A.M., Dyson N.J. 2008. E2F1 represses beta-catenin transcription and is antagonized by both pRB and CDK8. Nature. V. 455. P. 552. https://doi.org/10.1038/nature07310
  21. 21. Petre C.E., Wetherill Y.B., Danielsen M., Knudsen K.E. 2002. Cyclin D1: mechanism and consequence of androgen receptor co-repressor activity. J. Biol. Chem. V. 277. P. 2207. https://doi: 10.1074/jbc.M106399200
  22. 22. Popov B.V., Sutula G.I., Petrov N.S., Yang X.J. 2018. Preparation and characterization of the antibody recognizing AMACR inside its catalytic center. Int. J. Oncol. V. 52. P. 547. https://doi.org/10.3892/ijo.2017.4220
  23. 23. Popov B., Petrov N., Ryabov V., Evsyukov I. 2020. p130 and pRb in the maintenance of transient quiescence of mesenchymal stem cells. Stem Cells Int. Article ID 8883436. https://doi.org/10.1155/2020/8883436
  24. 24. Sage J. 2012. The retinoblastoma tumor suppressor and stem cell biology. Genes Dev. V. 26. P. 1409. https://doi.org/10.1101/gad.193730.112
  25. 25. Schneider J.A., Logan S.K. 2018. Revisiting the role of Wnt/β-catenin signaling in prostate cancer. Mol. Cell Endocrinol. V. 462. P. 3. https://doi.org/10.1016/j.mce.2017.02.008
  26. 26. Sharma A., Yeow W.S, Ertel A., Coleman I., Clegg N., Thangavel C., Morrissey C., Zhang X., Comstock C.E., Witkiewicz A.K. et al. 2010. The retinoblastoma tumor suppressor controls androgen signaling and human prostate cancer progression. J. Clin. Invest. V. 120. P. 4478. https://doi.org/10.1172/JCI44239
  27. 27. Sherr C.J. 1996. Cancer cell cycles. Science. V. 274. P. 1672. https://doi.org/10.1126/science.274.5293.1672
  28. 28. Siegel R.L., Miller K.D., Fuchs H.E., Jemal A. 2021. Cancer Statistics, 2021. CA Cancer J. Clin. V. 71. P. 7. https://doi.org/10.3322/caac.21654
  29. 29. Tomlins S.A., Laxman B., Varambally S., Cao X., Yu J., Helgeson B.E., Cao Q., Prensner J.R., Rubin M.A., Shah R.B., Mehra R., Chinnaiyan A.M. 2008. Role of the TMPRSS2-ERG gene fusion in prostate cancer. Neoplasia. V. 10. P. 177. https://doi.org/10.1593/neo.07822
  30. 30. Truica C.I., Byers S., Gelmann E.P. 2000. Beta-catenin affects androgen receptor transcriptional activity and ligand specificity. Cancer Res. V. 60. P. 4709.
  31. 31. Viatour P., Sage J. 2011. Newly identified aspects of tumor suppression by RB. Dis. Model. Mech. V. 4. P. 581. https://doi.org/10.1242/dmm.008060
  32. 32. Voeller H.J., Truica C.I., Gelmann E.P. 1998. Beta-catenin mutations in human prostate cancer. Cancer Res. V. 58. P. 2520.
  33. 33. Wang C.Y., Xu Z.B., Wang J.P., Jiao Y., Zhang B. 2017. Rb deficiency accelerates progression of carcinoma of the urinary bladder in vivo and in vitro through inhibiting autophagy and apoptosis. Int. J. Oncol. V. 50. P. 1221. https://doi.org/10.3892/ijo.2017.3889
  34. 34. Weber J.D., Kuo M.L., Bothner B., DiGiammarino E.L., Kriwacki R.W., Roussel M.F., Sherr C.J. 2000. Cooperative signals governing ARF-mdm2 interaction and nucleolar localization of the complex. Mol. Cell Biol. V. 20. P. 2517. https://doi.org/10.1128/MCB.20.7.2517-2528.2000
  35. 35. Weinberg R.A. 1995. The retinoblastoma protein and cell cycle control. Cell. V. 81. P. 323. https://doi.org/10.1016/0092-8674 (95)90385-2
  36. 36. Wodarz A., Nusse R. 1998. Mechanisms of Wnt signaling in development. Annu. Rev. Cell Dev. Biol. V. 14. P. 59. https://doi.org/10.1146/annurev.cellbio.14.1.59
  37. 37. Yang X., Chen M.W., Terry S., Vacherot F., Bemis D.L., Capodice J., Kitajewski J., de la Taille A., Benson M.C., Guo Y., Buttyan R. 2006. Complex regulation of human androgen receptor expression by Wnt signaling in prostate cancer cells. Oncogene. V. 25. P. 3436. https://doi.org/10.1038/sj.onc.1209366
  38. 38. Yu X., Wang Y., Jiang M., Bierie B., Roy-Burman P., Shen M.M., Taketo M.M., Wills M., Matusik R.J. 2009. Activation of beta-catenin in mouse prostate causes HGPIN and continuous prostate growth after castration. Prostate. V. 69. P. 249. https://doi.org/10.1002/pros.20877
  39. 39. Xu Y., Chen S.Y., Ross K.N., Balk S.P. 2006. Androgens induce prostate cancer cell proliferation through mammalian target of rapamycin activation and post-transcriptional increases in cyclin D proteins. Cancer Res. V. 66. P. 7783. https://doi.org/10.1158/0008-5472.CAN-05-4472
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library