RAS BiologyЦитология Cell and Tissue Biology

  • ISSN (Print) 0041-3771
  • ISSN (Online) 3034-6061

Study of neurodegenerative changes in the CA1 area of the dorsal hippocampus in adult rats after prenatal hyperhomocysteinemia

PII
10.31857/S0041377124010083-1
DOI
10.31857/S0041377124010083
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 66 / Issue number 1
Pages
85-98
Abstract
The work is devoted to the study of neurodegenerative changes in the ultrastructural organization in CA1 of the hippocampus in adult rats subjected to prenatal hyperhomocysteinemia (pHHC). Electron microscopy revealed signs of pathological changes in the CA1 neural networks of the dorsal hippocampus in adult pHHC rats, unlike in control ones: cell degeneration, destruction of the myelin sheath of axons, and destruction of axial cylinders of basal and apical dendrites directed from the pyramidal neurons to the Schaffer collaterals and the temporo-ammonic tractus. In control animals, a dense network of varicose extensions in the distal branches of the dendrites in the stratum oriens and stratum radiatum layers was detected using the Golgi method, providing an increased area for synaptic contacts. In pHHC rats, significant destructive changes are found in these dendritic varicosities: destruction of mitochondrial cristae and appearance of huge cisterns. In adult rats, pHHC completely negated the preference for the smell of valerian, which is a physiologically significant stimulus in the norm, indicating the negative effect of pHHC on the work of the olfactory analyzer, whose activity is closely connected with the hippocampus. These findings indicate the deleterious effect of homocysteine on the formation of the dorsal hippocampus as a morphological substrate for the integration of the incoming impulses.
Keywords
крыса гиппокамп онтогенез гипергомоцистеинемия ультраструктурная организация варикозное расширение дендритов нейродегенеративное изменение обоняние
Date of publication
15.01.2024
Year of publication
2024
Number of purchasers
0
Views
25

References

  1. 1. Арутюнян А.В., Милютина Ю.П., Залозняя И.В., Пустыгина А.В., Козина Л.С., Кореневский А.В. Использование различных экспериментальных моделей гипергомоцистеинемии в нейрохимических исследованиях. Нейрохимия. 2012. Т. 29. № 2. С. 83. (Arutjunyan A., Kozina L., Stvolinskiy S., Bulygina Y., Mashkina A., Khavinson V. 2012. Pinealon protects the rat offspring from prenatal hyperhomocysteinemia. Int. J. Clin. Exper. Med. 5(2). Р. 179).
  2. 2. Белехова М. Г., Туманова Н. Л. Структурные основы слухо-соматического взаимодействия в мозгу черепахи Еmys orbicularis. Дендритный обмен между ядрами. Журнал эвол. биохим. и физиол. 1988. Т. 24. № 3. С. 326. (Belekhova M.G., Tumanova N.L. 1988. Structural bases of audio-somatic interactions in turtle Еmys orbicularis brain. Dendrite exchange between nuclei. J. Evol. Biochem. Physiol. (Russ.) V. 24. P. 326.)
  3. 3. Борякова Е.Е., Гладышева О.С., Крылов В.Н. Возрастная динамика обонятельной чувствительности у самок лабораторных мышей и крыс к запаху изовалериановой кислоты. Сенсорные системы. 2007. Т. 21. № 4. С. 341. (Boryakova E.E., Gladysheva O.S., Krylov V.N. 2007. Age dynamics of olfactory sensitivity in female laboratory mice and rats to the smell of isovaleric acid. Sensory systems. V. 21. P. 341.)
  4. 4. Мельник С.А., Гладышева О.С., Крылов В.Н. Возрастные изменения обонятельной чувствительности самцов мышей к запаху изовалериановой кислоты. Сенсорные системы. 2009. Т. 23. № 2. С. 151. (Mel’nik S.A., Gladysheva O.S., Krylov V.N. 2009. Age-related changes in the olfactory sensitivity of male mice to the smell of isovaleric acid. Sensory systems. V. 23. P. 151.)
  5. 5. Мельник С.А., Гладышева О.С., Крылов В.Н. Влияние предварительного воздействия паров изовалериановой кислоты на обонятельную чувствительность самцов домовой мыши. Сенсорные системы. 2012. Т. 26. № 1. С. 52. (Mel’nik S.A., Gladysheva O.S., Krylov V.N. 2012. Influence of preliminary exposure to isovaleric acid vapors on the olfactory sensitivity of male house mice. V. 26 P. 52.)
  6. 6. Allen T.A., Fortin N.J. 2013. The evolution of episodic memory. Proc. Natl. Acad. Sci. USA. V. 110. P. 10379.
  7. 7. Berger T., Rubner P., Schautzer F., Egg R., Ulmer H., Mayringer I., Dilitz E., Deisenhammer F., Reindl M. 2003. Antimyelin antibodies as a predictor of clinically definite multiple sclerosis after a first demyelinating event. New England J. Med. V. 349. 139. doi:10.1056/NEJMoa022328
  8. 8. Bergmann E., Zur G., Bershadsky G., Kahn I. 2016. The organization of mouse and human corticohippocampal networks estimated by intrinsic functional connectivity. Cereb. Cortex. 26. Р. 4497–4512. https://doi.org/10.1093/cercor/bhw327
  9. 9. Buckner R.L., Krienen F.M. 2013. The evolution of distributed association networks in the human brain. Trends Cogn. Sci. V. 17. P. 648. https://doi.org/10.1016/j.tics.2013.09.017
  10. 10. Dubrovskaya N.M., Vasilev D.S., Tumanova N.L., Alekseeva O.S., Nalivaeva N.N. 2022. Prenatal hypoxia impairs olfactory function in postnatal ontogeny in rats. Neurosci. Behav. Physiol. V. 52. P. 262. https://doi.org/10.1007/s11055-022-01233-3
  11. 11. Gass N., Schwarz A.J., Sartorius A., Schenker E., Risterucci C., Spedding M., Zheng L., Meyer-Lindenberg A., Weber-Fahr W. 2014. Sub-anesthetic ketamine modulates intrinsic BOLD connectivity within the hippocampal-prefrontal circuit in the rat. Neuropsychopharmacol. V. 39. P. 895.
  12. 12. Ketelslegers I.A., Van Pelt D.E., Bryde S., Neuteboom R.F., Catsman-Berrevoets C.E., Hamann D., Hintzen R.Q. 2015. Anti-MOG antibodies plead against MS diagnosis in an acquired demyelinating syndromes cohort. Multiple Sclerosis. V. 21. P. 1513. doi:10.1177/1352458514566666
  13. 13. Kezuka T., Usui Y., Yamakawa N., Matsunaga Y., Matsuda R., Masuda M., Utsumi H., Tanaka K., Goto H. 2012. Relationship between NMO-antibody and anti-MOG antibody in optic neuritis. J. Neuro-Ophthalmol. V. 32. P. 107. doi:10.1097/WNO.0b013e31823c9b6c
  14. 14. Kitley J., Woodhall M., Waters P., Leite M.I., Devenney E., Craig J., Palace J., Vincent A. 2012. Myelin-oligodendrocyte glycoprotein antibodies in adults with a neuromyelitis optica phenotype. Neurology. 79 (12). Р. 1273–1277. doi: 10.1212/WNL.0b013e31826aac4e
  15. 15. Liska A., Galbusera A., Schwarz A.J., Gozzi A. 2015. Functional connectivity hubs of the mouse brain. Neuroimage. V. 115. P. 281. https://doi.org/10.1016/j.neuroimage.2015.04.033
  16. 16. Lu J., Testa N., Jordan R., Elyan R., Kanekar S., Wang J., Eslinger P., Yang Q., Zhang B., Karunanayaka P. 2019. Functional connectivity between the resting-state olfactory network and the hippocampus in Alzheimer’s disease. Brain Sci. V. 9. P. 338. https://doi.org/10.3390/brainsci9120338
  17. 17. Matsumoto-Oda A., Oda R., Hayashi Y., Murakami H., Maeda N., Kumazaki K., Shimizu K., Matsuzawa T. 2003. Vaginal fatty acids produced by chimpanzees during menstrual cycles. Folia Primatol (Basel). V. 74. P. 75. https://doi.org/10.1159/000070000
  18. 18. Mechling A.E., Hübner N.S., Lee H-L., Hennig J., von Elverfeldt D., Harsan L-A. 2014. Fine-grained mapping of mouse brain functional connectivity with resting-state fMRI. Neuroimage. V. 96. P. 203. https://doi.org/10.1016/j.neuroimage.2014.03.078
  19. 19. Müller-Schwarze D., Müller-Schwarze C., Singer A.G., Silverstein R.M. 1974. Mammalian pheromone: identification of active component in the subauricular scent of the male pronghorn. Science. V. 183. P. 860. https://doi.org/10.1126/science.183.4127.860
  20. 20. Paxinos G., Watson C. 2007. The rat brain in stereotaxic coordinates. Elsevier: Amsterdam-Boston.
  21. 21. Postnikova T.Y., Amakhin D.V., Trofimova A.M., Tumanova N.L., Dubrovskaya N.M., Kalinina D.S., Kovalenko A.A., Shcherbitskaia A.D., Vasilev D.S., Zaitsev A.V. 2022. Maternal Hyperhomocysteinemia Produces Memory Deficits Associated with Impairment of Long-Term Synaptic Plasticity in Young Rats. Cells. V. 12. P. 58. https://doi.org/10.3390/cells12010058
  22. 22. Ribaut-Barassin C., Dupont J-L., Haeberlé a-M., Bombarde G., Huber G., Moussaoui S., Mariani J., Bailly Y. 2003. Alzheimer’s disease proteins in cerebellar and hippocampal synapses during postnatal development and aging of the rat. Neurosci. V. 120. P. 405. doi:10.1016/S0306-4522(03)00332-4
  23. 23. Rice D., Barone S. 2000. Critical periods of vulnerability for the developing nervous system: Evidence from humans and animal models. Environ. Health Perspect. V. 108. P. 511. https://doi.org/10.1289/ehp.00108s3511
  24. 24. Schwarz A.J., Gass N., Sartorius A., Zheng L., Spedding M., Schenker E., Risterucci C., Meyer-Lindenberg A., Weber-Fahr W. 2013. The low-frequency blood oxygenation level-dependent functional connectivity signature of the hippocampal-prefrontal network in the rat brain. Neurosci. V. 228. P. 243. https://doi.org/10.1016/j.neuroscience.2012.10.032
  25. 25. Shcherbitskaia A.D., Vasilev D.S., Milyutina Y.P., Tumanova N.L., Mikhel A.V., Zalozniaia I.V., Arutjunyan A.V. 2021. Prenatal hyperhomocysteinemia induces glial activation and alters neuroinflammatory marker expression in infant rat hippocampus. Cells. V. 10. P. 1536. https://doi.org/10.3390/cells10061536
  26. 26. Vasilev D.S., Shcherbitskaia A.D., Tumanova N.L., Mikhel A.V., Milyutina Y.P., Kovalenko A.A., Dubrovskaya N.M., Inozemtseva D.B., Zalozniaia I.V., Arutjunyan A.V. 2023. Maternal hyperhomocysteinemia disturbs the mechanisms of embryonic brain development and its maturation in early postnatal ontogenesis. Cells. V. 12. P. 189. https://doi.org/10.3390/cells12010189
  27. 27. Zhou G., Olofsson J.K., Koubeissi M.Z., Menelaou G., Rosenow J., Schuele S.U., Xug P., Voss J.L., Lane G., Zelano C. 2021. Human hippocampal connectivity is stronger in olfaction than other sensory systems. Progress Neurobiol. V. 201. P. 102027. https://doi.org/10.1016/j.pneurobio.2021.102027
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library