RAS BiologyЦитология Cell and Tissue Biology

  • ISSN (Print) 0041-3771
  • ISSN (Online) 3034-6061

Immunofluorescent identification of dystrophin, actin, myosin light and heavy chains in somatic muscle cells of earthworm Lumbricus terrestris

PII
10.31857/S0041377124010099-1
DOI
10.31857/S0041377124010099
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 66 / Issue number 1
Pages
99-104
Abstract
In muscle cells of the motor muscles of the earthworm Lumbricus terrestris dystrophin, actin, fast and slow isoforms of myosin heavy chains were identified by fluorescence microscopy. It can be assumed that the expression of these proteins was carried out at the earliest stages of the evolutionary formation of the intracellular contractile apparatus of the motor tissue in both invertebrates and vertebrates. This study will complement the picture of the evolutionary formation of motor muscle tissue.
Keywords
дистрофин актин миозин соматическая мышца аннелиды
Date of publication
15.01.2024
Year of publication
2024
Number of purchasers
0
Views
39

References

  1. 1. Давид О.Ф. Морфофизиологические основы локомоции аннелид. АН СССР. Ин-т эвол. физиол. и биохим. им. И.М. Сеченова. Л.: Наука, 1990. 168 c. (David O.F. 1990. Morfofiziologicheskie osnovy lokomocii annelid. AN SSSR. In-t evoluc. fiziologii i biohimii im. I.M. Sechenova. L.: Nauka. 168 p.)
  2. 2. Cadot B., Gache V., Gomes E.R. 2015. Moving and positioning the nucleus in skeletal muscle — one step at a time. Nucleus. V. 6. P. 373. https://doi.org/10.1080/19491034. 2015.1090073
  3. 3. Dancker P., Löw I., Hasselbach W., Wieland T. 1975. Interaction of actin with phalloidin: polymerization and stabilization of F-actin. Biochim. Biophys. Acta. V. 400. P. 407. https://doi.org/10.1016/0005-2795 (75)90196-8
  4. 4. Filippova A., Purschke G., Tzetlin A.B., Müller M.C.M. 2006. Three-dimensional reconstruction of the F-actin musculature of Dorvillea kastjani (Dorvilleidae, Polychaeta) by means of phalloidin-labelling and cLSM. Scientia Marina. V. 70(S3). P. 293. https://doi.org/ 10.3989/scimar.2006.70s3293
  5. 5. Filippova A., Pürschke G., Tzetlin A.B., Müller M.C.M. 2010. Musculature in polychaetes: comparison of Myrianida prolifera (Syllidae) and Sphaerodoropsis sp. (Sphaerodoridae). Invertebrate Biology. V. 129. P. 184. https://doi.org/10.1111/j.1744-7410.2010.00191.x
  6. 6. Florczyk-Soluch U., Polak K., Dulak J. 2021. The multifaceted view of heart problem in Duchenne muscular dystrophy. Cell. Mol. Life. Sci. V. 78. P. 5447. https://doi.org/ 10.1007/s00018-021-03862-2
  7. 7. Fromherz S., Szent-Györgyi A.G. 1995. Role of essential light chain EF hand domains in calcium binding and regulation of scallop myosin. Proc. Natl. Acad. Sci. USA. V. 92. P. 7652. https://doi.org/10.1073%2Fpnas.92.17.7652
  8. 8. Giugia J., Gieseler K., Arpagaus M., Ségalat L. 1999. Mutations in the dystrophin-like dys-1 gene of Caenorhabditis elegans result in reduced acetylcholinesterase activity. FEBS Lett. V. 463. P. 270. https://doi.org/10.1016/s0014-5793 (99)01651-8
  9. 9. Han Y.H., Ryu K.B., Medina Jiménez B.I., Kim J., Lee H.Y., Cho S.J. 2020. Muscular development in Urechis unicinctus (Echiura, Annelida). Int. J. Mol. Sci. V. 21. P. 1. https://doi.org/10.3390/ijms21072306
  10. 10. Hooper S.L., Thuma J.B. 2005. Invertebrate muscles: muscle specific genes and proteins. Physiol. Rev. V. 85. P. 1001. https://doi.org/10.1152/physrev.00019.2004
  11. 11. Kanzawa N., Kawamura Y., Matsuno A., Maruyama K. 1991. Characterization of myosin isolated from bodywall smooth muscle of the annelid, Urechis unicinctus. Proc. Japan Acad. V. 67. P. 176. https://doi.org/10.2183/pjab.67.176
  12. 12. Li Y., Hu H., Butterworth M.B., Tian J.B., Zhu M.X., O’Neil R.G. 2016. Expression of a Diverse array of Ca2+-activated K+ channels (SK1/3, IK1, BK) that functionally couple to the mechanosensitive TRPV4 channel in the collecting duct system of kidney. PLoS One. V. 11: e0155006. https://doi.org/10.1371/journal.pone.0155006
  13. 13. Lovato T.L., Meadows S.M., Baker P.W., Sparrow J.C., Cripps R.M. 2001. Characterization of muscle actin genes in Drosophila virilis reveals significant molecular complexity in skeletal muscle types. Insect. Mol. Biol. V. 10. P. 333. https://doi.org/10.1046/j.0962-1075.2001.00270.x
  14. 14. Lowey S., Waller G.S., Trybus K.M. 1993. Function of skeletal muscle myosin heavy and light chain isoforms by an in vitro motility assay. J. Biol. Chem. V. 268. P. 20414. https://doi.org/10.1016/S0021-9258 (20)80744-3
  15. 15. Meedel T.H. 1983. Myosin expression in the developing ascidian embryo. J. Exp. Zool. V. 227. P. 203. https://doi.org/10.1002/jez.1402270205
  16. 16. Mercer R.C., Mudalige W.A., Ige T.O., Heeley D.H. 2011. Vertebrate slow skeletal muscle actin — conservation, distribution and conformational flexibility. Biochim. Biophys. Acta. V. 1814. P. 1253. https://doi.org/10.1016/j.bbapap.2011.06.009
  17. 17. Miller D.M. 3rd, Ortiz I., Berliner G.C., Epstein H.F. 1983. Differential localization of two myosins within nematode thick filaments. Cell. V. 34. P. 477. https://doi.org/10.1016/0092-8674 (83)90381-1
  18. 18. Nieznanski K., Nieznanska H., Skowronek K., Kasprzak A.A., Stepkowski D. 2003. Ca2+ binding to myosin regulatory light chain affects the conformation of the N-terminus of essential light chain and its binding to actin. Arch. Biochem. Biophys. V. 417. P. 153. https://doi.org/10.1016/s0003-9861 (03)00382-5
  19. 19. Ono S., Pruyne D. 2012. Biochemical and cell biological analysis of actin in the nematode Caenorhabditis elegans. Methods. V. 56. P. 11. https://doi.org/10.1016/j.ymeth.2011.09.008
  20. 20. Pilgram G.S., Potikanond S., Baines R.A., Fradkin L.G., Noordermeer J.N. 2010. The roles of the dystrophin-associated glycoprotein complex at the synapse. Mol. Neurobiol. V. 41. P. 1. https://doi.org/10.1007/s12035-009-8089-5
  21. 21. Roberts R.G., Bobrow M. 1998. Dystrophins in vertebrates and invertebrates. Hum. Mol. Genet. V. 7. P. 589. https://doi.org/10.1093/hmg/7.4.589
  22. 22. Royuela M., Hugon G., Rivier F., Paniagua R., Mornet D. 2001. Dystrophin-associated proteins in obliquely striated muscle of the leech Pontobdella muricata (Annelida, Hirudinea). Histochem. J. V. 33. P. 135. https://doi.org/ 10.1023/A:1017979623095
  23. 23. Royuela M., Paniagua R., Rivier F., Hugon G., Robert A., Mornet D. 1999. Presence of invertebrate dystrophin-like products in obliquely striated muscle of the leech, Pontobdella muricata (Annelida, Hirudinea). Histochem. J. V. 31. P. 603. https://doi.org/10.1023/A:1003855108802
  24. 24. Rüchel J., Müller M.C.M. 2007. F-actin framework in Spirorbis cf. spirorbis (Annelida: Serpulidae): phalloidin staining investigated and reconstructed by cLSM. Invertebr. Biol. V. 126. P. 173. https://doi.org/10.1111/j.1744-7410.2007.00087.x
  25. 25. Sadoulet-Puccio H.M., Kunkel L.M. 1996. Dystrophin and its isoforms. Brain Pathol. V. 6. P. 25. https://doi.org/ 10.1111/j.1750-3639.1996.tb00780.x
  26. 26. Sweeney H.L., Holzbaur E.L.F. 2018. Motor proteins. Cold Spring Harb. Perspect. Biol. V. 10: a021931. https://doi.org/10.1101/cshperspect.a021931
  27. 27. Volkov E.M., Nurullin L.F., Svandová I., Nikolsky E.E., Vyskocil F. 2000. Participation of electrogenic Na+,K+-ATPase in the membrane potential of earthworm body wall muscles. Physiol. Res. V. 49. P. 481. http://www.biomed.cas.cz/physiolres/pdf/49/49_481.pdf
  28. 28. Wang Y., Mattson M.P., Furukawa K. 2002. Endoplasmic reticulum calcium release is modulated by actin polymerization. J. Neurochem. V. 82. P. 945. https://doi.org/ 10.1046/j.1471-4159.2002.01059.x
  29. 29. Wells L., Edwards K.A., Bernstein S.I. 1996. Myosin heavy chain isoforms regulate muscle function but not myofibril assembly. EMBO J. V. 15. P. 4454. https://doi.org/10.1002/j.1460-2075.1996.tb00822.x
  30. 30. Wilson D.G.S., Tinker A., Iskratsch T. 2022. The role of the dystrophin glycoprotein complex in muscle cell mechanotransduction. Commun. Biol. V. 5. P. 1022. https://doi.org/10.1038/s42003-022-03980-y
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library