RAS BiologyЦитология Cell and Tissue Biology

  • ISSN (Print) 0041-3771
  • ISSN (Online) 3034-6061

Melanoma cells adhesive properties activation in 3d spheroids

PII
10.31857/S0041377124040025-1
DOI
10.31857/S0041377124040025
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 66 / Issue number 4
Pages
330-340
Abstract
In this study, the viability and adhesive features of BRO and SK-MEL-2 cell lines were evaluated using a melanoma model. It was revealed that in BRO cells, the development of apoptosis after exposure to dacarbazine was combined with the transition of the proportion of cells to the G0 phase of the cell cycle, that corresponded to previously obtained results. The absence of apoptosis in 3D spheroids and the absence of exit from the cell cycle were observed in SK-MEL-2 melanoma cells. It was also revealed that in the control spheroids (cells without exposure) of the BRO and SK-MEL-2 melanoma lines, adhesion to fibronectin was higher compared with the cells of the control monolayer, which is explained by the three-dimensional structure requiring cell communication with the extracellular matrix. In spheroids formed by SK-MEL-2 cells, dacarbazine induced a decrease in adhesion to fibronectin, which may be associated with the development of drug resistance. An increase in the expression of integrins AV and β8 in BRO and SK-MEL-2, as well as integrin β5 in SK-MEL-2, was determined in cells after exposure to dacarbazine, which may indicate the involvement of aforementioned molecules in the exit from proliferative stage of tumor cells.
Keywords
меланома сфероиды солидные опухоли дакарбазин, адгезия апоптоз фибронектин
Date of publication
15.07.2024
Year of publication
2024
Number of purchasers
0
Views
43

References

  1. 1. Achill T. M., Meye J., & Morgan J. R. 2012. Advances in the formation, use and understanding of multi-cellular spheroids. Exp. Op. Biol. Ther. V. 12. P. 1347. https://doi.org/10.1517/14712598.2012.707181
  2. 2. Aksenenko M.B., Palkina N.V., Sergeeva O.N., Sergeeva E. Yu., Kirichenko A.K., Ruksha T.G. 2019. miR-155 overexpression is followed by downregulation of its target gene, NFE2L2, and altered pattern of VEGFA expression in the liver of melanoma B16-bearing mice at the premetastatic stage. Int. J. Exp. Pathol. V. 100. P. 311. https://doi.org/10.1111/iep.12342
  3. 3. Azimian-Zavareh V., Dehghani-Ghobadi Z., Ebrahimi M., Mirzazadeh K., Nazarenko I., Hossein G. 2021. Wnt5A modulates integrin expression in a receptor-dependent manner in ovarian cancer cells. Sci. Rep. V. 11. P. 5885. doi: 10.1038/s41598-021-85356-6
  4. 4. Chen G., Kawazoe N., Tateishi T. 2008. Effects of ECM proteins and cationic polymers on the adhesion and proliferation of rat islet cells. The Open Biotechnol. J. V. 2: e1874070727154. https://doi.org/10.2174/1874070700802010133
  5. 5. Colella G., Fazioli F., Gallo M., De Chiara A., Apice G., Ruosi C., Cimmino A., De Nigris F. 2018. Sarcoma spheroids and organoids — promising tools in the era of personalized medicine. Int. J. Mol. Sci. V. 19. P. 615. https://doi.org/10.3390/ijms19020615
  6. 6. Esimbekova A.R., Palkina N.V., Zinchenko I.S., Belenyuk V.D., Savchenko A.A., Sergeeva E.Y., Ruksha T.G. 2023. Focal adhesion alterations in G0-positivemelanoma cells. Cancer Med. V. 12. P. 7294. https://doi.org/10.1002/cam4.5510
  7. 7. Kewitz S., Stiefel M., Kramm C.M., & Staege M.S. 2014. Impact of O6-methylguanine-DNA methyltransferase (MGMT) promoter methylation and MGMT expression on dacarbazine resistance of Hodgkin’s lymphoma cells. Leukemia research. V. 38. P. 138. https://doi.org/10.1016/j.leukres.2013.11.001
  8. 8. Komina A.V., Palkina N.V., Aksenenko M.B., Lavrentev S.N., Moshev A.V., Savchenko A.A., Averchuk A.S., Rybnikov Y.A., Ruksha T.G.2019.Semaphorin-5A downregulation is associated with enhanced migration and invasion of BRAF-positive melanoma cells under vemurafenib treatment in melanomas with heterogeneous BRAF status. Melanoma Res. V. 29. P. 544. https://doi.org/10.1097/CMR.0000000000000621
  9. 9. Lee S. Y., Koo I. S., Hwang H. J., Lee D. W. 2023. In vitro three-dimensional (3D) cell culture tools for spheroid and organoid models. SLAS Discov. V. 29. P. 5 131. https://doi.org/10.1016/j.slasd.2023.03.006
  10. 10. Lin T. C., Yang C. H., Cheng L. H., Chang W. T., Lin Y. R., Cheng H.C. 2019. Fibronectin in cancer: friend or foe. Cells. V. 9. P. 27. doi: 10.3390/cells9010027.
  11. 11. Livak K. J., Schmittgen T. D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods. V. 25. P. 402. https://doi.org/10.1006/meth.2001.1262
  12. 12. Liu Y., Sheikh M. S. 2014. Melanoma: molecular pathogenesis and therapeutic management. Mol. Cell.Pharmacol. V. 6. P. 228.
  13. 13. Sakalem M. E., De Sibio M. T., da Costa F. A. D. S., de Oliveira M. 2021. Historical evolution of spheroids and organoids, and possibilities of use in life sciences and medicine. Biotechnol. J. V. 16: 2000463. https://doi.org/10.1002/biot.202000463
  14. 14. Srisongkram T., Weerapreeyakul N., Thumanu K. 2020. Evaluation of melanoma (SK-MEL-2) cell growth between three-dimensional (3D) and two-dimensional (2D) cell cultures with fourier transform infrared (FTIR) microspectroscopy. Int. J. Mol. Sci. V. 21: 4141. https://doi.org/10.3390/ijms21114141
  15. 15. Syed A. M., Kundu S., Ram C., Kulhari U., Kumar A., Mugale M. N., Murty U.S., Sahu B. D. 2022. Aloin alleviates pathological cardiac hypertrophy via modulation of the oxidative and fibrotic response. Life Sci., V. 288: 120159. https://doi.org/10.1016/j.lfs.2021.120159
  16. 16. Zanoni M., Cortesi M., Zamagni A., Arienti C., Pignatta S., Tesei A. 2020. Modeling neoplastic disease with spheroids and organoids. J. Hematol. Oncol. V. 13. P. 1. https://doi.org/10.1186/s13045-020-00931-0
  17. 17. Zanoni M., Piccinini F., Arienti C., Zamagni A., Santi S., Polico R., Bevilacqua A., Tesei A. 2016. 3D tumor spheroid models for in vitro therapeutic screening: a systematic approach to enhance the biological relevance of data obtained. Sci. Rep. V. 6: 19103. https://doi.org/10.1038/srep19103
  18. 18. Zhou J., Yi Q., Tang L. 2019. The roles of nuclear focal adhesion kinase (FAK) on cancer: a focused review. J. Exp. Clin. Cancer Res. V. 38. P. 250. https://doi: 10.1186/s13046-019-1265-1
  19. 19. Wu C., Weis S. M., Cheresh D. A. 2023. Upregulation of fibronectin and its integrin receptors – an adaptation to isolation stress that facilitates tumor initiation. J. Cell Sci. V. 136: 261483. https://doi.org/10.1242/jcs.261483
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library