- PII
- 10.31857/S0041377124040064-1
- DOI
- 10.31857/S0041377124040064
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 66 / Issue number 4
- Pages
- 380-392
- Abstract
- Scientists need cell models from human tissues to develop methods of gene therapy and genome editing for monogenic diseases. It is preferable to use minimally invasive methods to obtain samples; these tissues can be applied for further screening in order to select the most effective approach to restore the synthesis of the target protein. We used the CRISPR/Cas9-SAM transcriptional activation system, which ensures expression of the DYSF gene in HEK293Т cells, as well as in fibroblasts from patients with dysferlinopathy (c.2779delG (Ala927LeufsX21)). After targeted activation of DYSF, it was possible to detect the main gene products: mRNA and protein (HEK293Т_ТА) and mRNA (fibroblasts). Transcriptionally activated dysferlin-deficient fibroblasts and HEK293 cells can be used to evaluate the in vitro efficacy of gene therapy for dysferlinopathies.
- Keywords
- миодистрофии дисферлинопатия дисферлин геномное редактирование транскрипционная активация модели заболеваний CRISPR/dCas9 фибробласты
- Date of publication
- 15.07.2024
- Year of publication
- 2024
- Number of purchasers
- 0
- Views
- 34
References
- 1. Деев Р.В., Мавликеев М.О., Бозо И.Я., Пулин А.А., Еремин И.И. 2014. Генно-клеточная терапия наследственных заболеваний мышечной системы: современное состояние вопроса. Гены и клетки. Т 9. № 4. С. 6. (Deev R.V., Mavlikeev M.O., Bozo I.Ya., Pulin A.A., Eremin I.I. 2014. Gene- and cell-based therapy of muscle system hereditary disorders: state-of-art. Genes Cells V. 9. No. 4. P. 6.)
- 2. Исаев А.А., Бардаков С.Н., Мкртчян Л.А., Мусатова Е.В., Хмелькова Д.Н., Гусева М.В., Каймонов В.С., Яковлев И.А., Деев Р.В. 2023. Новые варианты нуклеотидных последовательностей гена DYSF, выявленные методом секвенирования нового поколения. Мед. генетика. Т. 22. № 6. С. 3. (Isaev A.A., Bardakov S.N., Mkrtchyan L.A., Musatova E.V., Khmelkova D.N., Guseva M.V., Kaimonov V.S., Yakovlev I.A., Deev R.V. 2023. New nucleotide sequence variants of the DYSF gene, identified by the next-generation sequencing. Medical Genetics. V. 22. No. 6. P. 3.)
- 3. Старостина И.Г., Соловьева В.В., Шевченко К.Г., Деев Р.В., Исаев А.А., Ризванов А.А. 2012. с. Гены и клетки. Т.7. № 3. C. 25. (Starostina I.G, Solovyeva V.V., Shevchenko K.G. et al. 2012. (Formation of the recombinant adenovirus encoding codon-optimized dysferlin gene and analysis of the recombinant protein expression in cell culture in vitro. Cell. Transplantat. Tiss. Eng. V.7. No. 3. P. 25.)
- 4. Яковлев И.А., Деев Р.В., Соловьева В.В., Ризванов А.А., Исаев А.А. 2016. Пред- и посттранскрипционная модификация генетической информации в программе лечения мышечных дистрофий. Гены и клетки. Т. 1 1. № 2. С. 42. (Yakovlev I.A., Deev R.V., Solovyеva V.V., Rizvanov A.A., Isaev A.A. 2016. Pre- and posttranscriptional genetic information modification in muscular dystrophy treatment. Genes Cells. V. 11. No 2. P. 42.)
- 5. Agrawal G. Aung A., Varghese S. 2017. Skeletal muscle-on-a-chip: an in vitro model. V. 17. P. 3447. https://doi.org/10.1039/c7lc00512a
- 6. Arab-Bafrani Z., Shahbazi-Gahrouei D., Abbasian M., Fesharaki M. 2016. Multiple MTS assay as the alternative method to determine survival fraction of the irradiated HT-29 colon cancer cells. J. Med. Signals Sens. V. 6. P. 112.
- 7. Argov Z., Sadeh M., Mazor K., Soffer D., Kahana E., Eisenberg I., Mitrani-Rosenbaum S., Richard I., Beckmann J., Keers S., Bashir R., Bushby K., Rosenmann H. 2000. Muscular dystrophy due to dysferlin deficiency in Libyan Jews. Clinical and genetic features. Brain. V. 6. P. 1229. https://doi.org/10.1093/brain/123.6.1229
- 8. Barthelemy F. Santoso J.W., Rabichow L., Jin R., Little I., Nelson S.F., McCain M.L., Miceli M.C. 2022. Modeling patient-specific muscular dystrophy phenotypes and therapeutic responses in reprogrammed myotubes engineered on micromolded gelatin hydrogels. Front Cell Dev Biol. V. 10: 830415. https://doi.org/10.3389/fcell.2022.830415
- 9. Belanto J., Diaz-Perez S., Magyar C., Maxwell M., Yilmaz Y., Topp K., Boso G., Jamieson C.H., Cacalano N.A., Jamieson C.A. 2010. Dexamethasone induces dysferlin in myoblasts and enhances their myogenic differentiation. Neuromuscul Disord. V. 2. P. 111. https://doi.org/10.1016/j.nmd.2009.12.003
- 10. Bouchard C., Tremblay J.P. 2023. Portrait of dysferlinopathy: diagnosis and development of therapy. J. Clin. Med. V. 12: 6011. https://doi.10.3390/jcm12186011
- 11. Bruge C., Geoffroy M., Benabides M., Pellier E., Gicquel E., Dhiab J., Hoch L., Richard I., Nissan X. 2022. Skeletal muscle cells derived from induced pluripotent stem cells: a platform for limb girdle muscular dystrophies. Biomed. V. 10: 1428. https://doi.org/10.3390/biomedicines10061428
- 12. Chamberlain J.R., Chamberlain J.S. 2017. Progress toward gene therapy for duchenne muscular dystrophy. Mol. Ther. V. 5. P. 1125. https://doi.10.1016/j.ymthe.2017.02.019
- 13. Crisafulli S., Sultana J., Fontana A., Salvo F., Messina S., Trifiro G. 2020. Global epidemiology of duchenne muscular dystrophy: an updated systematic review and meta-analysis. Orphanet J. Rare Dis. V. 15. P. 141. https://doi.org/10.1186/s13023-020-01430-8
- 14. Defour A., Van der Meulen J.H., Bhat R., Bigot A., Bashir R., Nagaraju K., Jaiswal J.K. 20 14. Dysferlin regulates cell membrane repair by facilitating injury-triggered acid sphingomyelinase secretion. Cell Death Dis. V. 5: 1306. https://doi.org/10.1038/cddis.2014.272
- 15. Heidersbach A.J., Dorighi K.M., Gome J.A. 2023. A versatile, high-efficiency platform for CRISPR-based gene activation. Nat. Commun. V. 14. P. 902. https://doi.org/10.1038/s41467-023-36452-w
- 16. Hunt C., Hartford S.A., White D., Pefanis E., Hanna T., Herman C., Wiley J., Brown H., Su Q., Xin Y., Voronin D., Nguyen H., Altarejos J., Crosby K., Haines J. et al. 2021. Tissue-specific activation of gene expression by the Synergistic Activation Mediator (SAM) CRISPRa system in mice. Nat. Commun. V. 12. P. 2770. https://doi.org/10.1038/s41467-021-22932-4
- 17. Illarioshkin S.N., Ivanova-Smolenskaya I.A., Tanaka H., Vereshchagin N.V., Markova E.D., Poleshchuk V.V., Lozhnikova S.M., Sukhorukov V.S., Limborska S.A., Slominsky P.A., Bulayeva K.B., Tsuji S. 1996. Clinical and molecular analysis of a large family with three distinct phenotypes of progressive muscular dystrophy. Brain. V. 6. P. 1895. https://doi.org/10.1093/brain/119.6.1895
- 18. Jean J., Lapointe M., Soucy J., Pouliot R. 2009. Development of an in vitro psoriatic skin model by tissue engineering. J. Dermatol. Sci. V. 53. P. 19. https://doi.org/10.1016/j.jdermsci.2008.07.009
- 19. Jiang J., Sun Y., Xiao R., Wai K., Ahmad M.J., Khan F.A., Zhou H., Li Z., Zhang Y., Zhou A., Zhang S. 2019. Porcine antiviral activity is increased by CRISPRa-SAM system. Biosci. Rep. V. 8. https://doi.org/10.1042/BSR20191496
- 20. Jensen T.I., Mikkelsen N.S., Gao Z, Foßelteder J., Pabst G., Axelgaard E., Laustsen A., König S., Reinisch A., Bak R.O. 2021. Targeted regulation of transcription in primary cells using CRISPRa and CRISPRi. Genome Res. V. 3111. P. 2120. https://doi.org/10.1101/gr.275607.121
- 21. Johnson C.I., Argyle D.J., Clements D.N. 2016. In vitro models for the study of osteoarthritis. Vet. J. V. 209. P. 40. https://doi.org/10.1016/j.tvjl.2015.07.011
- 22. Kabadi A.M., Thakore P.I., Vockley C.M., Ousterout D.G., Gibson T.M., Guilak F., Reddy T.E., Gersbach C.A. 2015. Enhanced MyoD-induced transdifferentiation to a myogenic lineage by fusion to a potent transactivation domain. ACS Synth. Biol. V. 6. P. 689. https://doi.org/10.1021/sb500322u
- 23. Katt M.E., Placone A.L., Wong A.D., Xu Z.S., Searson P.C. 2016. In vitro tumor models: advantages, disadvantages, variables, and selecting the right platform. Front. Bioeng. Biotechnol.V. 4. P. 12. https://doi.org/10.3389/fbioe.2016.00012
- 24. Khaiboullina S.F., Martynova E.V., Bardakov S.N., Mavlikeev M.O., Yakovlev I.A., Isaev A.A., Deev R.V., Rizvanov A.A. 2017. Serum cytokine profile in a patient diagnosed with dysferlinopathy. Case Rep. Med. V. 2017: 3615354. https://doi.org/10.1155/2017/3615354
- 25. Konermann S., Brigham M.D., Trevino A.E., Joung J., Abudayyeh O.O., Barcena C., Hsu P.D., Habib N., Gootenberg J.S., Nishimasu H., Nureki O., Zhang F. 2015. Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex. Nature. V. 7536. P. 583. https://doi.org/10.1038/nature14136
- 26. Lek A., Evesson F. J., Sutton R. B., North K. N., Cooper S.T. 2012. Ferlins: regulators of vesicle fusion for auditory neurotransmission, receptor trafficking and membrane repair. Traffic. V. 13. P. 185. https://doi.org/10.1111/j.1600-0854.2011.01267.x
- 27. Leshinsky-Silver E., Argov Z., Rozenboim L., Cohen S., Tzofi Z., Cohen Y., Wirguin Y., Dabby R., Lev D., Sadeh M. 2007. Dysferlinopathy in the jews of the caucasus: a frequent mutation in the dysferlin gene. Neuromus. Disord. V. 17. P. 950. https://doi.org/10.1016/j.nmd.2007.07.010
- 28. Liu W., Pajusalu S., Lake N.J., Zhou G., Ioannidis N., Mittal P., Johnson N.E., Weihl C.C., Williams B.A., Albrecht D.E., Rufibach L.E., Lek M. 2019. Estimating prevalence for limb-girdle muscular dystrophy based on public sequencing databases. Genet. Med. V. 21. P. 2512. https://doi.10.1038/s41436-019-0544-8
- 29. Luo N., Zhong W., Li J., Zhai Z., Lu J., Dong R. 2022. Targeted activation of HNF4α/HGF1/FOXA2 reverses hepatic fibrosis via exosome-mediated delivery of CRISPR/dCas9-SAM system. Nanomed. V. 17. P. 1411. https://doi.org/10.10.2217/nnm-2022-0083
- 30. Mamchaoui K., Trollet C., Bigot A., Negroni E., Chaouch S., Wolff A., Kandalla P.K., Marie S., Di Santo J., St. Guily J.L., Muntoni F., Kim J., Philippi S., Spuler S., Levy N., et al. 2011. Immortalized pathological human myoblasts: towards a universal tool for the study of neuromuscular disorders. Skeletal Muscle. V. 1. P. 34. https://doi.org/10.1186/2044-5040-1-34
- 31. Rossi R., Torelli S., Ala P., Weston W., Morgan J., Malhotra J., Muntoni F. 2023. MyoD-induced reprogramming of human fibroblasts and urinary stem cells in vitro: protocols and their applications. Front. Physiol. V. 14: 1145047. https://doi.org/10.3389/fphys.2023.1145047
- 32. Salmon P., Trono D. 2006. Production and titration of lentiviral vectors. Curr. Protoc. Neurosci. V. 4. U. 4.21. https://doi.org/10.0.3.234/0471142301.ns0421s53
- 33. Salari N., Fatahi B., Valipour E., Kazeminia M., Fatahian R., Kiaei A., Shohaimi S., Mohammadi M. 2022. Global prevalence of Duchenne and Becker muscular dystrophy: a systematic review and meta-analysis. J. Orthop Surg. Res. V. 17. P. 96. https://doi.org/10.1186/s13018-022-02996-8
- 34. Shin M.K., Bang J.S., Lee J.E., Tran H.D., Park G., Lee D.R., Jo J. 2022. Generation of skeletal muscle organoids from human pluripotent stem cells to model myogenesis and muscle regeneration. Int. J. Mol. Sci. V. 23. N. 5108. https://doi.org/10.3390/ijms23095108
- 35. Stoppelkamp S., Bell H.S., Palacios-Filardo J., Shewan D.A., Riedel G., Platt B. 2011. In vitro modelling of Alzheimer’s disease: degeneration and cell death induced by viral delivery of amyloid and Tau. Exp Neurol. V. 229. P. 226. https://doi.org/10.1016/j.expneurol.2011.01.018
- 36. Stewart S.A., Dykxhoorn D.M., Palliser D., Mizuno H., Yu E.Y., An D.S., Sabatini D.M., Chen I.S., Hahn W.C., Sharp P.A., Weinberg R.A., Novina C.D. 2003. Lentivirus-delivered stable gene silencing by RNAi in primary cells. RNA. V. 4. P. 493. https://doi.org/10.1261/rna.2192803.
- 37. Szulc J., Wiznerowicz M., Sauvain M.O., Trono D., Aebischer P. 2006. A versatile tool for conditional gene expression and knockdown. Nat. Methods. V. 3. P. 10. https://doi.org/10.1038/nmeth846
- 38. Thomas P., Smart T.G. 2005. HEK293 cell line: A vehicle for the expression of recombinant proteins. J. Pharmacol. Toxicol. Methods. V. 51. P. 187. https://doi.org/10.1016/j.vascn.2004.08.014
- 39. Tominaga K., Tominaga N., Williams E.O., Rufibach L., Schöwel V., Spuler S., Viswanathan M., Guarente L.P. 2021. 4-Phenylbutyrate restores localization and membrane repair to human dysferlin mutations. iScience. V. 25. N. 103667. https://doi.org/10.1016/j.isci.2021.103667
- 40. Tumiati LC., Mickle D.A.G., Weisel R.D., Williams W.G., Li R.K. 1994. An in vitro model to study myocardial ischemic injury. J. Tiss. Culture Methods. V. 16. P. 1. https://doi.org/10.1007/BF01404830
- 41. Ulman A., Kot M., Skrzypek K., Szewczyk B., Majka M. 2021. Myogenic differentiation of ips cells shows different efficiency in simultaneous comparison of protocols. Cells. V. 10. P. 1671. https://doi.org/10.3390/cells10071671
- 42. Umakhanova Z.R., Bardakov S.N., Mavlikeev M.O., Chernova O.N., Magomedova R.M., Akhmedova P.G., Yakovlev I.A., Dalgatov G.D., Fedotov V.P., Isaev A.A., Deev R.V. 2017. Twenty-year clinical progression of dysferlinopathy in patients from Dagestan. Front. Neurol. V. 8. P. 77. https://doi.org/10.3389/fneur.2017.00077
- 43. Urtizberea J.A., Bassez G., Leturcq F., Nguyen K., Krahn M., Levy N. 2008. Dysferlinopathies. Neurol. India. V. 3. P. 289. https://doi.org/10.4103/0028-3886.43447
- 44. Vunjak Novakovic G., Eschenhagen T., Mummery C. 2014. Myocardial tissue engineering: in vitro models. Cold Spring Harb. Perspect Med. V. 4: a014076. https://doi.org/10.1101/cshperspect.a014076
- 45. Wang H., La Russa M., Qi LS. 2016. CRISPR/Cas9 in genome editing and beyond. Annu. Rev. Biochem. V. 85. P. 227. https://doi.org/10.1146/annurev-biochem-060815-014607
- 46. Wang C.H., Lundh M., Fu A., Kriszt R., Huang T.L., Lynes M.D., Leiria L.O., Shamsi F., Darcy J., Greenwood B.P., Narain N.R., Tolstikov V., Smith K.L., Emanuelli B., Chang Y.T., et al. 2020. CRISPR-engineered human brown-like adipocytes prevent diet-induced obesity and ameliorate metabolic syndrome in mice. Sci. Transl. Med. V. 26: eaaz8664. https://doi.org/10.1126/scitranslmed.aaz8664
- 47. Xiong K., Zhou Y., Hyttel P., Bolund L., Freude K.K., Luo Y. 2016. Generation of induced pluripotent stem cells (iPSCs) stably expressing CRISPR-based synergistic activation mediator (SAM). Stem Cell Res. V. 17. P. 665. https://doi.org/10.1016/j.scr.2016.10.011
- 48. Zhang Y.S., Oklu R., Albadawi H. 2017. Bioengineered in vitro models of thrombosis: methods and techniques. Cardiovasc. Diagn. Ther. V. 7. P. 329. https://doi.org/10.21037/cdt.2017.08.08
- 49. Zorin V.L., Pulin A.A., Eremin I.I., Korsakov I.N., Zorina A.I., Khromova N.V., Sokova O.I., Kotenko K.V., Kopnin P.B. 2017. Myogenic potential of human alveolar mucosa derived cells. Cell Cycle. V. 16. P. 545. https://doi.org/10.1080/15384101.2017.1284714