RAS BiologyЦитология Cell and Tissue Biology

  • ISSN (Print) 0041-3771
  • ISSN (Online) 3034-6061

Microvesicles from mesenchymal stem cells for cartilage tissue regeneration in equine osteoarthritis

PII
10.31857/S0041377124050044-1
DOI
10.31857/S0041377124050044
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 66 / Issue number 5-6
Pages
438-449
Abstract
Current treatment strategies for osteoarthritis primarily focus on symptom management. Currently, the use of cell therapy methods, including mesenchymal stem cells (MSCs), is practiced in medicine and veterinary medicine. Microvesicles (MVs) obtained from MSCs are also currently used for the purpose of regeneration. The purpose of this study was to investigate the potential effects of artificial MVs on rat chondrocytes. In vitro experiments showed that MVs obtained from MSCs had a positive effect on the viability and migration ability of the chondrocyte cell culture. In 3D modeling of OA in vitro, MVs neutralized the effect of pro-inflammatory factors IL-1b and TNF-α. Most likely, these effects were due to the direct penetration of MVs contents into chondrocytes, since the possibility of fusion of MVs membranes with chondrocyte membranes was experimentally demonstrated. Thus, we have shown the positive effect of MVs on an in vitro model of OA.
Keywords
остеоартрит мезенхимные стволовые клетки микровезикулы лошадь хондроциты хрящевая ткань крыса
Date of publication
15.11.2024
Year of publication
2024
Number of purchasers
0
Views
12

References

  1. 1. Закирова Е.Ю., Аймалетдинов А.М., Тамбовский М.А., Ризванов А.А. 2021. Сравнительная характеристика линий мезенхимных стволовых клеток различных видов животных. Цитология. Т. 63. № 2. С.139. (E.Yu. Zakirova, А.М. Aimaletdinov, M.A. Tambovsky, A.A. Rizvanov. 2021. Comparative characteristics of mesenchymal stem cell lines from different animal species. Tsitologiya. V. 63. No. 2. P. 139).
  2. 2. Тамбовский М. А., Аймалетдинов А.М., Закирова Е.Ю. 2023. Современные тенденции применения стволовых клеток и их производных при криоконсервации спермы животных. Биол. мембраны. Т. 40. № 5. С. 328. (M. A. Tambovsky, A. M. Aimaletdinov, E. Yu. Zakirova. 2023. Current trends in the application of stem cells and their derivatives in animal sperm cryopreservation. Biochem. Moscow Suppl. Ser. A. V. 17. P. 243.) https://doi.org/10.31857/S0233475523050110
  3. 3. Aimaletdinov A.M. Iuferova A.K., Zakirova. E.Yu. 2023. Isolation and cultivation of sterlet myoblasts. Opera Medica Physiologica. V. 3. P. 167. https://doi.org/10.24412/2500-2295-2023-3-167-173
  4. 4. Atala A. 2004. Tissue engineering and regenerative medicine: concepts for clinical application. Rejuvenation Res. V. 7. №1. P.15. https://doi.org/10.1089/154916804323105053
  5. 5. Bertoni L., Jacquet-Guibon S., Branly T., Legendre F., Desancé M., Mespoulhes C., Melin M., Hartmann D.J., Schmutz A., Denoix J.M., Galéra P., Demoor M., Audigié F. 2020. An experimentally induced osteoarthritis model in horses performed on both metacarpophalangeal and metatarsophalangeal joints: technical, clinical, imaging, biochemical, macroscopic and microscopic characterization. PLoS One. V. 15: e0235251. https://doi.org/10.1371/journal.pone.0235251
  6. 6. Bhattacharjee M., Escobar Ivirico J.L., Kan H.M., Shah S., Otsuka T., Bordett R., Barajaa M., Nagiah N., Pandey R., Nair L.S., Laurencin C.T. 2022. Injectable amnion hydrogel-mediated delivery of adipose-derived stem cells for osteoarthritis treatment. Proc. Natl. Acad. Sci. USA. V. 119: e2120968119. https://doi.org/10.1073/pnas.2120968119
  7. 7. Bonab M.M., Alimoghaddam K., Talebian F., Ghaffari S.H., Ghavamzadeh A., Nikbin B. 2006. Aging of mesenchymal stem cell in vitro. BMC Cell Biol. V. 7. P. 14. https://doi.org/10.1186/1471-2121-7-14
  8. 8. Chen F.H., Rousche K.T., Tuan R.S. 2006. Technology insight: adult stem cells in cartilage regeneration and tissue engineering. Nat. Clin. Pract. Rheumatol. V. 2. P. 373. https://doi.org/10.1038/ncprheum0216
  9. 9. Galuzzi M., Perteghella S., Antonioli B., Tosca M.C., Bari E., Tripodo G., Sorrenti M., Catenacci L., Mastracci L., Grillo F., Marazzi M., Torre M.L. 2018. Human engineered cartilage and decellularized matrix as an alternative to animal osteoarthritis model. Polymers (Basel). V. 10. Art. ID 738. https://doi.org/10.3390/polym10070738
  10. 10. Goodrich L.R., Nixon A.J. 2006. Medical treatment of osteoarthritis in the horse – a review. Vet. J. V. 171. P. 51. https://doi.org/10.1016/j.tvjl.2004.07.008
  11. 11. Kaufman M.R., Tobias G.W. 2003. Engineering cartilage growth and development. Clin. Plast. Surg. V. 30. P. 539. https://doi.org/10.1016/s0094-1298 (03)00071-3
  12. 12. Kesti M., Eberhardt C., Pagliccia G., Kenkel D., Grande D., Boss A., Zenobi-Wond M. 2015. Bioprinting complex cartilaginous structures with clinically compliant biomaterials. Advanced Functional Materials. V. 25. P. 7406. https://doi.org/10.1002/adfm.201503423
  13. 13. Kriston-Pál É., Haracska L., Cooper P., Kiss-Tóth E., Szukacsov V., Monostori É. 2020. A regenerative approach to canine osteoarthritis using allogeneic, adipose-derived mesenchymal stem cells. safety results of a long-term follow-up. Front. Vet. Sci. V. 7: P. 510. https://doi.org/10.3389/fvets.2020.00510
  14. 14. La Greca A., Solari C., Furmento V., Lombardi A., Biani M.C., Aban C., Moro L., García M., Guberman A.S., Sevlever G.E., Miriuka S.G., Luzzani C. 2018. Extracellular vesicles from pluripotent stem cell-derived mesenchymal stem cells acquire a stromal modulatory proteomic pattern during differentiation. Exp. Mol. Med. V. 50. P. 1. https://doi.org/10.1038/s12276-018-0142-x
  15. 15. Lee M.J., Kim J., Kim M.Y., Bae Y.S., Ryu S.H., Lee T.G., Kim J.H. 2010. Proteomic analysis of tumor necrosis factor-alpha-induced secretome of human adipose tissue-derived mesenchymal stem cells. J. Proteome Res. V. 9. P. 1754. https://doi.org/10.1021/pr900898n
  16. 16. Li J.J., Hosseini-Beheshti E., Grau G.E., Zreiqat H., Little C.B. 2019. Stem cell-derived extracellular vesicles for treating joint injury and osteoarthritis. nanomaterials (Basel). V. 9. Art. ID 261. https://doi.org/10.3390/nano9020261
  17. 17. Lories R.J., Luyten F.P. 2012. Osteoarthritis, a disease bridging development and regeneration. Bonekey. Rep. V. 1. Art. ID 136. https://doi.org/10.1038/bonekey.2012.136
  18. 18. Lumi X., Hawlina M., Glavač D., Facskó A., Moe M.C., Kaarniranta K., Petrovski G. 2015. Ageing of the vitreous: from acute onset floaters and flashes to retinal detachment. Ageing Res. Rev. V. P. 71. https://doi.org/10.1016/j.arr.2015.03.006
  19. 19. Mahajan A., Verma S., Tandon V. 2005. Osteoarthritis. J. Assoc. Physicians India. V. 53. P. 634.
  20. 20. Meyer M. 2019. Processing of collagen based biomaterials and the resulting materials properties. Biomed. Eng. Online. V. 18. Art. ID 24. https://doi.org/10.1186/s12938-019-0647-0
  21. 21. Murray I.R., Péault B. 2015. Q&A: Mesenchymal stem cells – where do they come from and is it important? BMC Biol. V. 13. Art. ID 99. https://doi.org/10.1186/s12915-015-0212-7
  22. 22. Phinney D.G., Hill K., Michelson C., DuTreil M., Hughes C., Humphries S., Wilkinson R., Baddoo M., Bayly E. 2006. Biological activities encoded by the murine mesenchymal stem cell transcriptome provide a basis for their developmental potential and broad therapeutic efficacy. Stem Cells. V. 24. P. 186. https://doi.org/10.1634/stemcells.2004-0236.
  23. 23. Revenaugh M.S. 2005. Extracorporeal shock wave therapy for treatment of osteoarthritis in the horse: clinical applications. Vet. Clin. North Am. Equine Pract. V. 21. P. 609. https://doi.org/10.1016/j.cveq.2005.09.001
  24. 24. Røsland G.V., Svendsen A., Torsvik A., Sobala E., McCormack E., Immervoll H., Mysliwietz J., Tonn J.C., Goldbrunner R., Lønning P.E., Bjerkvig R., Schichor C. 2009. Long-term cultures of bone marrow-derived human mesenchymal stem cells frequently undergo spontaneous malignant transformation. Cancer Res. V. 69. P. 5331. https://doi.org/10.1158/0008-5472.CAN-08-4630
  25. 25. Rychel J.K. 2010. Diagnosis and treatment of osteoarthritis. Top Companion Anim. Med. V.25. P.20. https://doi.org/10.1053/j.tcam.2009.10.005
  26. 26. Taruc-Uy R.L., Lynch S.A. 2013. Diagnosis and treatment of osteoarthritis. Prim. Care. V. 40. P. 821. https://doi.org/10.1016/j.pop.2013.08.003
  27. 27. Thomas A.C., Hubbard-Turner T., Wikstrom E.A., Palmieri-Smith R.M. 2017. Epidemiology of posttraumatic osteoarthritis. J. Athl. Train. V.52. P. 491. https://doi.org/10.4085/1062-6050-51.5.08
  28. 28. Wang J., Liao L., Wang S., Tan J. 2013. Cell therapy with autologous mesenchymal stem cells-how the disease process impacts clinical considerations. Cytotherapy. V. 15. P. 893. https://doi.org/10.1016/j.jcyt.2013.01.218
  29. 29. Weinstein A.M., Rome B.N., Reichmann W.M., Collins J.E., Burbine S.A., Thornhill T.S., Wright J., Katz J.N., Losina E. 2013. Estimating the burden of total knee replacement in the United States. J. Bone Joint Surg. Am. V. 95. P. 385. https://doi.org/10.2106/JBJS.L.00206
  30. 30. Wu C.C., Chen W.H., Zao B, Lai P.L., Lin T.C., Lo H.Y., Shieh Y.H., Wu C.H., Deng W.P. 2011. Regenerative potentials of platelet-rich plasma enhanced by collagen in retrieving pro-inflammatory cytokine-inhibited chondrogenesis. Biomaterials. V. 32. Art. ID 5847. https://doi.org/10.1016/j.biomaterials.2011.05.002.
  31. 31. Wu L., Petrigliano F.A., Ba K., Lee S., Bogdanov J., McAllister D.R., Adams J.S., Rosenthal A.K., Van Handel B., Crooks G.M., Lin Y., Evseenko D. 2014. Lysophosphatidic acid mediates fibrosis in injured joints by regulating collagen type I biosynthesis. Osteoarthritis Cartilage. V. 23. P. 308. https://doi.org/10.1016/j.joca.2014.11.012
  32. 32. Wu T.J., Fong Y.C., Lin C.Y., Huang Y.L., Tang C.H. 2018. Glucose enhances aggrecan expression in chondrocytes via the PKCα/p38-miR141-3p signaling pathway. J. Cell Physiol. V. 233. P. 6878. https://doi.org/10.1002/jcp.26451
  33. 33. Wu X., Wang Y., Xiao Y., Crawford R., Mao X., Prasadam I. 2019. Extracellular vesicles: potential role in osteoarthritis regenerative medicine. J. Orthop. Translat. V. 21. P. 73. https://doi.org/10.1016/j.jot.2019.10.012
  34. 34. Zakirova E., Aimaletdinov A., Mansurova M., Titova A., Kurilov I., Rutland C.S., Malanyeva A., Rizvanov A. 2024. Artificial microvesicles: new perspective on healing tendon wounds. Cells Tiss. Organs. V. 213. P. 24. https://doi.org/10.1159/000526845
  35. 35. Zakirova E., Valeeva A., Sofronova S., Tambovsky M., Rutland C. Rizvanov A. Gomzikova M. 2022. Application of mesenchymal stem cells derived artificial microvesicles for the treatment of canine skin wound. BioNanoSci. V. 12. P. 83. https://doi.org/10.1007/s12668-021-00928-0
  36. 36. Zhuang Y., Jiang S., Yuan C., Lin K. 2022. The potential therapeutic role of extracellular vesicles in osteoarthritis. Front. Bioeng. Biotechnol. V. 10: 1022368. https://doi.org/10.3389/fbioe.2022.1022368
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library