RAS BiologyЦитология Cell and Tissue Biology

  • ISSN (Print) 0041-3771
  • ISSN (Online) 3034-6061

Human myocardial mast cells containing chymase and their detection using various antibodies

PII
10.31857/S0041377124050066-1
DOI
10.31857/S0041377124050066
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 66 / Issue number 5-6
Pages
462-470
Abstract
In last decades, special attention has been paid to the role of mast cells in the pathogenesis of cardiovascular diseases, including sudden cardiac death. One of the components of mast cell granules is chymase. For its specific detection, various reagents for immunohistochemistry, which have different specifity, are used. This circumstance does not allow us to accurately assess the subpopulations of myocardial mast cells. The purpose of this study was to evaluate the suitability of various reagents to selective detection of myocardial mast cells and to test the hypothesis of the existence of a population of mast cells staining with alcian blue and having chymase negative reaction. Analysis of the results of the various protocols presented in this work showed that, in comparison with goat polyclonal antibodies to chymase, mouse monoclonal antibodies have greater specificity, and preliminary staining of sections with alcian blue makes it possible to neutralize the nonspecific detection of cardiomyocyte lipofuscin. In addition, all the proposed protocols make it possible to detect the morphological heterogeneity of mast cells and their granules in the human myocardium.
Keywords
тучные клетки химаза миокард человека иммуногистохимия
Date of publication
15.11.2024
Year of publication
2024
Number of purchasers
0
Views
33

References

  1. 1. Атякшин Д.А., Бухвалов И.Б., Тиманн М. 2018. Протеазы тучных клеток в формировании специфического тканевого микроокружения: патогенетические и диагностические аспекты. Терапия. Т. 24. № 6. С. 128. (Atiakshin D., Buchwalow I., Tiemann M. 2018. Mast cell proteases in formation of the specific tissue microenvironment: pathogenic and diagnostic aspects. Therapy. V. 24. P. 128.) https://dx.doi.org/10.18565/therapy.2018.6.128-140
  2. 2. Григорьев И.П., Коржевский Д.Э. 2021. Тучные клетки в головном мозге позвоночных – локализация и функции. Журнал эволюционной биохимии и физиологии. Т. 57. № 1. С. 17. (Grigorev I.P., Korzhevskii D.E. 2021. Mast cells in the vertebrate brain: localization and functions. J. Evol. Biochem. Physiol. V. 57. P. 17.) https://doi.org/10.31857/S0044452921010046
  3. 3. Григорьев И.П., Коржевский Д.Э. 2021. Тучные клетки и нейровоспаление в патогенезе нервных и психических заболеваний. Медицинский академический журнал. Т. 21. № 2. С. 7. (Grigorev I.P., Korzhevskii D.E. 2021. Mast cells and neuroinflammation in pathogenesis of neurologic and psychiatric diseases. Medical Academic Journal. V. 21. № 2. P. 7.) https://doi.org/10.17816/MAJ63228
  4. 4. Гусельникова В.В., Бекоева С.А., Коржевская В.Ф., Федорова Е.А., Коржевский Д.Э. 2015. Гистохимическая и иммуногистохимическая идентификация тучных клеток миокарда человека. Морфология. Т. 147. № 2. С. 80. (Gusel’nikova V.V., Bekoyeva S.A., Korzhevskaya V.F., Fyodorova Y.A., Korzhevskiy D.E. 2015. Histochemical and immunohistochemical identification of human myocardial mast cells. Morfologiia. V. 147. № 2. P. 80.)
  5. 5. Цибулькина В.Н., Цибулькин Н.А. 2017. Тучная клетка как полифункциональный элемент иммунной системы. Аллергология и иммунология в педиатрии. Т. 49. № 2. С. 4. (Tsybulkina V.N., Tsybulkin N.A. 2017. Mast cell as poly-functional element of immune system. Allergol. Immunol. Pediatr. V. 49. № 2. P. 4.)
  6. 6. Alberti S. 2017. Phase separation in biology. Cur Biol. V. 27. Art. ID R1097. https://doi.org/10.1016/j.cub.2017.08.069
  7. 7. Arvan P., Castle D. 1998. Sorting and storage during secretory granule biogenesis: looking backward and looking forward. Biochem J. V. 332. P. 593. https://doi.org/10.1042/bj3320593
  8. 8. Atiakshin D., Patsap O., Kostin A., Mikhalyova L., Buchwalow I., Tiemann M. 2023. Mast cell tryptase and carboxypeptidase A3 in the formation of ovarian endometrioid cysts. Int. J. Mol. Sci. V. 24: 6498. https://doi.org/10.3390/ijms24076498
  9. 9. Braga T., Grujic M., Lukinius A., Hellman L., Abrink M., Pejler G. 2007. Serglycin proteoglycan is required for secretory granule integrity in mucosal mast cells. Biochemical J. V. 403. P. 49. https://doi.org/10.1042/BJ20061257
  10. 10. Blank U. 2011. The mechanisms of exocytosis in mast cells. Adv. Exp. Med. Biol. V. 716. P. 107. https://doi.org/10.1007/978-1-4419-9533-9_7
  11. 11. Crivellato E., Nico B., Mallardi F., Beltrami C. A., Ribatti D. 2003. Piecemeal degranulation as a general secretory mechanism? Anat. Rec. Part A. V. 274. P. 778. https://doi.org/10.1002/ar.a.10095
  12. 12. Grigorev I.P., Korzhevskii D.E. 2021. Modern imaging technologies of mast cells for diology and medicine (Review). Sovrem. Tekhnologii Med. V. 13. P. 93. https://doi.org/10.17691/stm2021.13.4.10
  13. 13. Hammel I., Lagunoff D., Galli S.J. 2010. Regulation of secretory granule size by the precise generation and fusion of unit granules. J. Cell. Mol. Med. V. 14. P. 1904. https://doi.org/10.1111/j.1582-4934.2010.01071.x
  14. 14. Irani A.A., Schechter N.M., Craig S.S., DeBlois G., Schwartz L.B. 1986. Two types of human mast cells that have distinct neutral protease compositions. Proc. Natl. Acad. Sci. U.S.A. V. 83. P. 4464. https://doi.org/10.1073/pnas.83.12.4464
  15. 15. Irani A.M., Bradford T.R., Kepley C.L., Schechter N.M., Schwartz L.B. 1989. Detection of MCT and MCTC types of human mast cells by immunohistochemistry using new monoclonal anti-tryptase and anti-chymase antibodies. J. Histochem. Cytochem. V. 37. P. 1509. https://doi.org/10.1177/37.10.2674273
  16. 16. Jin J., Jiang Y., Chakrabarti S., Su Z. 2022. Cardiac mast cells: a two-head regulator in cardiac homeostasis and pathogenesis following injury. Front. Immunol. V. 13. Art. ID 963444. https://doi.org/10.3389/fimmu.2022.963444
  17. 17. Juliano G.R., Skaf M.F., Ramalho L.S., Juliano G.R., Torquato B.G.S., Oliveira M.S., Oliveira F.A., Espíndula A.P., Cavellani C.L., Teixeira V.P.A., Ferraz M.L.D.F. 2020. Analysis of mast cells and myocardial fibrosis in autopsied patients with hypertensive heart disease. Revista Portuguesa de Cardiologia. V. 39. P. 89. https://doi.org/10.1016/j.repc.2019.11.003
  18. 18. KleinJan A., Godthelp T., Blom H.M., Fokkens W.J. 1996. Fixation with Carnoy’s fluid reduces the number of chymase-positive mast cells: not all chymase-positive mast cells are also positive for tryptase. Allergy. V. 51. P. 614. https://doi.org/10.1111/j.1398-9995.1996.tb04681.x
  19. 19. Kologrivova I., Shtatolkina M., Suslova T., Ryabov V. 2021. Cells of the immune system in cardiac remodeling: Main players in resolution of inflammation and repair after myocardial infarction. Front. Immunol. V. 12: 664457. https://doi.org/10.3389/fimmu.2021.664457
  20. 20. Levick S.P., Widiapradja A. 2018. Mast cells: Key contributors to cardiac fibrosis. Int. J. Mol. Sci. V. 19: 231. https://doi.org/10.3390/ijms19010231
  21. 21. Mackins C.J., Kano S., Seyedi N., Schäfer U., Reid A.C., Machida T., Silver R.B., Levi R. 2006. Cardiac mast cell-derived renin promotes local angiotensin formation, norepinephrine release, and arrhythmias in ischemia/reperfusion. J. Clin. Inv. V. 116. P. 1063. https://doi.org/10.1172/JCI25713
  22. 22. Mulloy B., Lever R., Page C.P. 2017. Mast cell glycosaminoglycans. Glycoconj J. V. 34. P. 351. https://doi.org/10.1007/s10719-016-9749-0
  23. 23. Reid A.C., Brazin J.A., Morrey C., Silver R.B., Levi R. 2011. Targeting cardiac mast cells: pharmacological modulation of the local renin-angiotensin system. Curr. Pharm. Des. V. 17. P. 3744. https://doi.org/10.2174/138161211798357908
  24. 24. Sperr W.R., Bankl H.C., Mundigler G., Klappacher G., Grossschmidt K., Agis H., Simon P., Laufer P., Imhof M., Radaszkiewicz T., Glogar D., Lechner K., Valent P. 1994. The human cardiac mast cell: localization, isolation, phenotype, and functional characterization. Blood. V. 84. P. 3876.
  25. 25. Theoharides T.C., Twahir A., Kempuraj D. 2023. Mast cells in the autonomic nervous system and potential role in disorders with dysautonomia and neuroinflammation. Ann. Allergy, Asthma, Immunol. V. 132. P. 440. https://doi.org/10.1016/j.anai.2023.10.032
  26. 26. Urata H., Boehm K.D., Philip A., Kinoshita A., Gabrovsek J., Bumpus F.M., Husain A. 1993. Cellular localization and regional distribution of an angiotensin II-forming chymase in the heart. J. Clin. Inv. V. 91. P. 1269. https://doi.org/10.1172/JCI116325
  27. 27. Weidner N., Austen K.F. 1993. Heterogeneity of mast cells at multiple body sites. Fluorescent determination of avidin binding and immunofluorescent determination of chymase, tryptase, and carboxypeptidase content. Pathol. Res. Pract. V. 189. P. 156. https://doi.org/10.1016/S0344-0338 (11)80086-5
  28. 28. Wernersson S., Pejler G. 2014. Mast cell secretory granules: armed for battle. Nat. Rev. Immunol. V. 14. P. 478. https://doi.org/10.1038/nri3690
  29. 29. Von Zastrow M., Castle A.M., Castle J.D. 1989. Ammonium chloride alters secretory protein sorting within the maturing exocrine storage compartment. J. Biol. Chem. V. 264. P. 6566.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library