RAS BiologyЦитология Cell and Tissue Biology

  • ISSN (Print) 0041-3771
  • ISSN (Online) 3034-6061

Analysis of cryopreservation impact on mononuclear leukocyte metabolism

PII
S3034606125010046-1
DOI
10.7868/S3034606125010046
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 67 / Issue number 1
Pages
42-49
Abstract
Studying the metabolic activity of mononuclear cells (MNCs) is crucial in biology and medicine. Cryopreservation is commonly used to store samples for long-term research, which helps minimize errors. However, the impact of low temperatures on MNCs metabolism remains understudied. The aim of this study was to investigate the effects of cryopreservation on glycolysis and oxidative phosphorylation in MNCs. Using the Seahorse XFe96 analyzer, we measured the metabolic parameters of cryopreserved MNCs via extracellular flux analysis. The results showed a significant decrease in the rate of oxidative phosphorylation in cryopreserved MNCs, without changes in MNC subset composition. Importantly, cryopreservation did not impact the rate of glycolysis. However, thawed cells exhibited reduced ability to increase metabolic rates in response to mitogenic stimulation. In conclusion, cryopreservation alters the metabolic profile of MNCs. To obtain reliable data on metabolic activity, the use of freshly isolated cells is preferable.
Keywords
мононуклеарные лейкоциты криоконсервация метаболизм гликолиз окислительное фосфорилирование
Date of publication
03.03.2025
Year of publication
2025
Number of purchasers
0
Views
40

References

  1. 1. Бабийчук Л. А., Михайлова О. А., Зубов П. М., Рязанцев В. В. 2013. Оценка стадий апоптоза и распределения фосфатидилсерина в мембране ядросодержащих клеток пуповинной и периферической крови при различных технологиях криоконсервации. Гены и клетки. Т. 8. № 4. С. 50. (Babijchuk L. A., Mykhailova O. O., Zubov P. M., Ryazantsev V. V. 2013. Evaluation of apoptosis stages and posphatidylserine distribution in membrane of cord and peripheral blood nucleated cells at various cryopreservation protocols. Genes and Cells. V. 8. P. 50.) https://doi.org/10.23868/gc121610
  2. 2. Ващенко В. И., Чухловин А. Б., Петренко Г. И., Вильянинов В. Н., Багаутдинов Ш. М. 2015. Действие факторов замораживания на изменения внутриклеточного метаболизма при криоконсервации костного мозга человека. Вестник MAX. Т. 4. С. 91. (Vashchenko V. I., Сhuklovin A. B., Petrenko G. I., Vilyaninov V. N., Bagautdinov Ch. M. 2015. Impact of preserving agents upon on intracellular meтaboliс changes during cryoconservation of human bone marrow. J. IAR. V. 4. P. 91.)
  3. 3. Кит О. И., Гненная Н. В., Филиппова С. Ю., Чембарова Т. В., Лысенко И. Б., Новикова И. А., Розенко Л. Я., Димитриади С. Н., Шалашная Е. В., Ишонина О. Г. 2023. Криоконсервация гемопоэтических стволовых клеток периферической крови в трансплантологии: современное состояние и перспективы. Кардиоваск. терапия и профилактика. Т. 22. № 11. С. 124. (Kit O. I., Gnennaya N. V., Filippova S. Yu., Chembarova T. V., Lysenko I. B., Novikova I. A., Rozenko L. Ya., Dimitriadi S. N., Shalashnaya E. V., Ishonina O. G. 2023. Cryostorage of peripheral blood hematopoietic stem cells in transplantology: current status and prospects. Cardiovascular Ther. Prevention. V. 22. P. 124.) https://doi.org/10.15829/1728-8800-2023-3691
  4. 4. Нельсон Д., Кокс М. 2014. Основы биохимии Ленинджера. М.: БИНОМ. Лаборатория знаний. 636 с. (Nelson D. L., Cox M. M. 2014. Lehninger principles of biochemistry. M.: BINOM. Laboratory of knowledge. 636 p.)
  5. 5. Савилова А. М., Чулкина М. М., Алексеев Л. П. 2013. Сравнительное исследование экспрессии мРНК интерлейкина-2 и рецептора интерлейкина-2α в лимфоцитах, активированных ФГА и КонА. Иммунология. Т. 34. № 2. С. 76. (Savilova A. M., Chulkina M. M., Alexeev L. P. 2013. Comparative investigation of interleukin-2 and interleukin-2 receptor alpha mRNA expression in lymphocytes activated by PHA or ConA. Immunol. V. 34. P. 76.)
  6. 6. Anderson J., Toh Z. Q., Reitsma A., Do L. A.H., Nathanielsz J., Licciardi P. V. 2019. Effect of peripheral blood mononuclear cell cryopreservation on innate and adaptive immune responses. J. Immunol. Methods. V. 465. P. 61. https://doi.org/10.1016/j.jim.2018.11.006
  7. 7. Chakraborty S., Khamaru P., Bhattacharyya A. 2022. Regulation of immune cell metabolism in health and disease: Special focus on T and B cell subsets. Cell Biol. Int. V. 46. P. 1729. https://doi.org/10.1002/cbin.11867
  8. 8. Desdin-Mico G., Soto-Heredero G., Mittelbrunn M. 2018. Mitochondrial activity in T cells. Mitochondrion. V. 41. P. 51. https://doi.org/10.1016/j.mito.2017.10.006
  9. 9. Fu Y., Dang W., He X., Xu F., Huang H. 2022. Biomolecular pathways of cryoinjuries in low-temperature storage for mammalian specimens. Bioengineering (Basel). V. 9. P. 545. https://doi.org/10.3390/bioengineering9100545
  10. 10. Gaber T., Chen Y., Krauss P. L., Buttgereit F. 2019. Metabolism of T Lymphocytes in health and disease. Int. Rev. Cell Mol. Biol. V. 342. P. 95. https://doi.org/10.1016/bs.ircmb.2018.06.002
  11. 11. Gualtieri R., Kalthur G., Barbato V., Di Nardo M., Adiga S. K., Talevi R. 2021. Mitochondrial dysfunction and oxidative stress caused by cryopreservation in reproductive cells. Antioxidants (Basel). V. 10. Art. ID: 337. https://doi.org/10.3390/antiox10030337
  12. 12. Haider P., Hoberstorfer T., Salzmann M., Fischer M. B., Speidl W. S., Wojta J., Hohensinner P. J. 2022. Quantitative and functional assessment of the influence of routinely used cryopreservation media on mononuclear leukocytes for medical research. Int. J. Mol. Sci. V. 23. Art. ID: 1881. https://doi.org/10.3390/ijms23031881
  13. 13. Len J. S., Koh W. S.D., Tan S. X. 2019. The roles of reactive oxygen species and antioxidants in cryopreservation. Biosci. Rep. V. 39. Art. ID: BSR20191601. https://doi.org/10.1042/BSR20191601
  14. 14. Lomsadze G., Gogebashvili N., Enukidze M., Machavariani M., Intskirveli N., Sanikidze T. 2011. Alteration in viability and proliferation activity of mitogen stimulated Jurkat cells. Georgian Med. News. V. 9. P. 50.
  15. 15. Makowski L., Chaib M., Rathmell J. C. 2020. Immunometabolism: from basic mechanisms to translation. Immunol. Rev. V. 295. P. 5. https://doi.org/10.1111/imr.12858
  16. 16. Martikainen M. V., Roponen M. 2020. Cryopreservation affected the levels of immune responses of PBMCs and antigen-presenting cells. Toxicol. In Vitro. V. 67. Art. ID: 104918. https://doi.org/10.1016/j.tiv.2020.104918
  17. 17. Mas-Bargues C., Garcia-Dominguez E., Borras C. 2022. Recent approaches to determine static and dynamic redox state-related parameters. Antioxidants (Basel). V. 11. Art. ID: 864. https://doi.org/10.3390/antiox11050864
  18. 18. Patel C. H., Leone R. D., Horton M. R., Powell J. D. 2019. Targeting metabolism to regulate immune responses in autoimmunity and cancer. Nat. Rev. Drug Discov. V. 18. P. 669. https://doi.org/10.1038/s41573-019-0032-5
  19. 19. Patil N. K., Bohannon J. K., Hernandez A., Patil T. K., Sherwood E. R. 2019. Regulation of leukocyte function by citric acid cycle intermediates. J. Leukoc. Biol. V. 106. P. 105. https://doi.org/10.1002/JLB.3MIR1118-415R
  20. 20. Starkov A. A. 2008. The role of mitochondria in reactive oxygen species metabolism and signaling. Ann. N. Y. Acad. Sci. V. 1147. P. 37. https://doi.org/10.1196/annals.1427.015
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library